Articles About Machine Learning

DENet: a deep architecture for audio surveillance applications

In the last years, a big interest of both the scientific community and the market has been devoted to the design of audio surveillance systems, able to analyse the audio stream and to identify events of interest; this is particularly true in security applications, in which the audio analytics can be profitably used as an alternative to video analytics systems, but also combined with them. Within this context, in this paper we propose a novel recurrent convolutional neural network architecture, […]

Read more

Univariate Function Optimization in Python

How to Optimize a Function with One Variable? Univariate function optimization involves finding the input to a function that results in the optimal output from an objective function. This is a common procedure in machine learning when fitting a model with one parameter or tuning a model that has a single hyperparameter. An efficient algorithm is required to solve optimization problems of this type that will find the best solution with the minimum number of evaluations of the objective function, […]

Read more

GraphHop: An Enhanced Label Propagation Method for Node Classification

A scalable semi-supervised node classification method on graph-structured data, called GraphHop, is proposed in this work. The graph contains attributes of all nodes but labels of a few nodes… The classical label propagation (LP) method and the emerging graph convolutional network (GCN) are two popular semi-supervised solutions to this problem. The LP method is not effective in modeling node attributes and labels jointly or facing a slow convergence rate on large-scale graphs. GraphHop is proposed to its shortcoming. With proper […]

Read more

Who’s a Good Boy? Reinforcing Canine Behavior using Machine Learning in Real-Time

In this paper we outline the development methodology for an automatic dog treat dispenser which combines machine learning and embedded hardware to identify and reward dog behaviors in real-time. Using machine learning techniques for training an image classification model we identify three behaviors of our canine companions: “sit”, “stand”, and “lie down” with up to 92% test accuracy and 39 frames per second… We evaluate a variety of neural network architectures, interpretability methods, model quantization and optimization techniques to develop […]

Read more

Few-Shot Learning with Class Imbalance

Few-shot learning aims to train models on a limited number of labeled samples given in a support set in order to generalize to unseen samples from a query set. In the standard setup, the support set contains an equal amount of data points for each class… However, this assumption overlooks many practical considerations arising from the dynamic nature of the real world, such as class-imbalance. In this paper, we present a detailed study of few-shot class-imbalance along three axes: meta-dataset […]

Read more

Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed

Iterative generative models, such as noise conditional score networks and denoising diffusion probabilistic models, produce high quality samples by gradually denoising an initial noise vector. However, their denoising process has many steps, making them 2-3 orders of magnitude slower than other generative models such as GANs and VAEs… In this paper, we establish a novel connection between knowledge distillation and image generation with a technique that distills a multi-step denoising process into a single step, resulting in a sampling speed […]

Read more

Matrix Types in Linear Algebra for Machine Learning

Last Updated on January 5, 2021 A lot of linear algebra is concerned with operations on vectors and matrices, and there are many different types of matrices. There are a few types of matrices that you may encounter again and again when getting started in linear algebra, particularity the parts of linear algebra relevant to machine learning. In this tutorial, you will discover a suite of different types of matrices from the field of linear algebra that you may encounter […]

Read more

A Gentle Introduction to Machine Learning Modeling Pipelines

Applied machine learning is typically focused on finding a single model that performs well or best on a given dataset. Effective use of the model will require appropriate preparation of the input data and hyperparameter tuning of the model. Collectively, the linear sequence of steps required to prepare the data, tune the model, and transform the predictions is called the modeling pipeline. Modern machine learning libraries like the scikit-learn Python library allow this sequence of steps to be defined and […]

Read more

Semi-Supervised Learning With Label Spreading

Semi-supervised learning refers to algorithms that attempt to make use of both labeled and unlabeled training data. Semi-supervised learning algorithms are unlike supervised learning algorithms that are only able to learn from labeled training data. A popular approach to semi-supervised learning is to create a graph that connects examples in the training dataset and propagates known labels through the edges of the graph to label unlabeled examples. An example of this approach to semi-supervised learning is the label spreading algorithm […]

Read more

Semi-Supervised Learning With Label Propagation

Semi-supervised learning refers to algorithms that attempt to make use of both labeled and unlabeled training data. Semi-supervised learning algorithms are unlike supervised learning algorithms that are only able to learn from labeled training data. A popular approach to semi-supervised learning is to create a graph that connects examples in the training dataset and propagate known labels through the edges of the graph to label unlabeled examples. An example of this approach to semi-supervised learning is the label propagation algorithm […]

Read more
1 72 73 74 75 76 226