Interventional Few-Shot Learning
We uncover an ever-overlooked deficiency in the prevailing Few-Shot Learning (FSL) methods: the pre-trained knowledge is indeed a confounder that limits the performance. This finding is rooted from our causal assumption: a Structural Causal Model (SCM) for the causalities among the pre-trained knowledge, sample features, and labels… Thanks to it, we propose a novel FSL paradigm: Interventional Few-Shot Learning (IFSL). Specifically, we develop three effective IFSL algorithmic implementations based on the backdoor adjustment, which is essentially a causal intervention towards […]
Read more