Articles About Deep Learning

Build Your First Text Classification model using PyTorch

Overview Learn how to perform text classification using PyTorch Grasp the importance of Pack Padding feature Understand the key points involved while solving text classification Introduction I always turn to State of the Art architectures to make my first submission in data science hackathons. Implementing the State of the Art architectures has become quite easy thanks to deep learning frameworks such as PyTorch, Keras, and TensorFlow. These frameworks provide an easy way to implement complex model architectures and algorithms with […]

Read more

A Simple Introduction to Sequence to Sequence Models

Overview In this article, I would give you an overview of sequence to sequence models which became quite popular for different tasks like machine translation, video captioning, image captioning, question answering, etc. Prerequisites: The reader should already be familiar with neural networks and, in particular, recurrent neural networks (RNNs). In addition, knowledge of LSTM or GRU models is preferable. If you are not familiar with LSTM I would prefer you to read LSTM- Long Short-Term Memory.

Read more

A Quick History of Neural Networks

This article is part of the Data Science Blogathon. Introduction Neural networks are ubiquitous right now. Organizations are splurging money on hardware and talent to ensure they can build the most complex neural networks and bring out the best deep learning solutions. Although Deep Learning is a fairly old subset of machine learning, it didn’t get its due recognition until the early 2010s. Today, it has taken the world by storm and captured public attention in a way that very […]

Read more

A Detailed Study of Self Supervised Contrastive Loss and Supervised Contrastive Loss

Introduction Supervised Contrastive Learning paper claims a big deal about supervised learning and cross-entropy loss vs supervised contrastive loss for better image representation and classification tasks. Let’s go in-depth in this paper what is about. Claim actually close to 1% improvement on image net data set¹. Architecture wise, its a very simple network resnet 50 having a 128-dimensional head. If you want you can add a few more layers as well. Architecture and training process from the paper Codeself.encoder = […]

Read more
1 21 22 23