Basics of Natural Language Processing(NLP) for Absolute Beginners

Introduction According to industry estimates, only 21% of the available data is present in a structured form. Data is being generated as we speak, as we tweet, as we send messages on WhatsApp and in various other activities. The majority of this data exists in the textual form, which is highly unstructured in nature.  Despite having high dimension data, the information present in it is not directly accessible unless it is processed (read and understood) manually or analyzed by an […]

Read more

Sentiment Analysis: VADER or TextBlob?

This article was published as a part of the Data Science Blogathon. What Is Sentiment Analysis? Conclusions are integral to practically all human exercises and are key influencers of our practices. Our convictions and impression of the real world, and the decisions we make, are, to an impressive degree, molded upon how others see and assess the world. Therefore, when we have to settle on a choice, we regularly search out the assessments of others. Opinions and their related concepts […]

Read more

Sentiment Analysis: Predicting Sentiment Of COVID-19 Tweets

This article was published as a part of the Data Science Blogathon. Introduction Hi folks, I hope you are doing well in these difficult times! We all are going through the unprecedented time of the Corona Virus pandemic. Some people lost their lives, but many of us successfully defeated this new strain i.e. Covid-19. The virus was declared a pandemic by World Health Organization on 11th March 2020. This article will analyze various types of “Tweets” gathered during pandemic times. […]

Read more

Dialogue Summarization: A Deep Learning Approach

This article was published as a part of the Data Science Blogathon. Dialogue Summarization: Its types and methodology   Image cc: Aseem Srivastava Summarizing long pieces of text is a challenging problem. Summarization is done primarily in two ways: extractive approach and abstractive approach. In this work, we break down the problem of meeting summarization into extractive and abstractive components which further collectively generate a summary of the conversation.   What is Dialogue Summarization? Humans are social animals, we exchange […]

Read more

Customer Sentiments Analysis of Pepsi and Coca-Cola using Twitter Data in R

This article was published as a part of the Data Science Blogathon. Introduction Coca-Cola and PepsiCo are well-established names in the soft drink industry with both in the fortune 500. The companies that own a wide spectrum of product lines in a highly competitive market have a fierce rivalry with each other and constantly competing for market share in almost all subsequent product verticals. We will analyze the sentiment of customers of these two companies with the help of 5000 […]

Read more

Introduction to Hugging Face’s Transformers v4.3.0 and its First Automatic Speech Recognition Model – Wav2Vec2

Overview Hugging Face has released Transformers v4.3.0 and it introduces the first Automatic Speech Recognition model to the library: Wav2Vec2 Using one hour of labeled data, Wav2Vec2 outperforms the previous state of the art on the 100-hour subset while using 100 times less labeled data Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data Wav2Vec2 achieves 4.8/8.2 WER Understand Wav2Vec2 implementation using transformers library on audio to text generation   Introduction Transformers has been […]

Read more

How to create your own Question and Answering API(Flask+Docker +BERT) using haystack framework

Introduction Note from the author: In this article, we will learn how to create your own Question and Answering(QA) API using python, flask, and haystack framework with docker. The haystack framework will provide the complete QA features which are highly scalable and customizable. In this article Medium Rules, the text will be used as the target document and fine-tuning the model as well. Basic Knowledge Required: Elasticsearch & Docker This article contains the working code which can be directly build […]

Read more

Streamlit Web API for NLP: Tweet Sentiment Analysis

This article was published as a part of the Data Science Blogathon. Introduction Developing Web Apps for data models has always been a hectic task for non-web developers. For developing Web API we need to make the front end as well as back end platform. That is not an easy task. But then python comes to the rescue with its very fascinating frameworks like Streamlit, Flassger, FastAPI. These frameworks help us to build web APIs very elegantly, without worrying about […]

Read more

Implementation of Attention Mechanism for Caption Generation on Transformers using TensorFlow

Overview Learning about the state of the art model that is Transformers. Understand how we can implement Transformers on the already seen image captioning problem using Tensorflow Comparing the results of Transformers vs attention models.   Introduction We have seen that Attention mechanisms (in the previous article) have become an integral part of compelling sequence modeling and transduction models in various tasks (such as image captioning), allowing modeling of dependencies without regard to their distance in the input or output […]

Read more

Emotion classification on Twitter Data Using Transformers

Introduction The world of Natural language processing is recently overtaken by the invention of Transformers. Transformers are entirely indifferent to the conventional sequence-based networks. RNNs are the initial weapon used for sequence-based tasks like text generation, text classification, etc. But with the arrival of LSTM and GRU cells, the issue with capturing long-term dependency in the text got resolved. But learning the model with LSTM cells is a hard task as we cannot make it learn parallelly.

Read more
1 7 8 9 10 11 14