Backpropagating Linearly Improves Transferability of Adversarial Examples

The vulnerability of deep neural networks (DNNs) to adversarial examples has drawn great attention from the community. In this paper, we study the transferability of such examples, which lays the foundation of many black-box attacks on DNNs...

We revisit a not so new but definitely noteworthy hypothesis of Goodfellow et al.’s and disclose that the transferability can be enhanced by improving the linearity of DNNs in an appropriate manner. We introduce linear backpropagation (LinBP), a method that performs backpropagation in a more linear fashion using off-the-shelf attacks that exploit gradients. More specifically, it calculates forward as

 

 

To finish reading, please visit source site