An implementation of the proximal policy optimization algorithm

PPO Pytorch C++

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm. Below is a small visualization of the environment, the algorithm is tested in.

test_mode

Build

You first need to install PyTorch. For a clean installation from Anaconda, checkout this short tutorial, or this tutorial, to only install the binaries.

Do

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/absolut/path/to/libtorch ..
make

Run

Run the executable with

cd build
./train_ppo

It should produce something like shown below.

epoch_1

epoch_10

Fig. 2: From left to right, the agent for successive epochs in training mode as it takes actions in the environment

 

 

 

To finish reading, please visit source site