AML-SVM: Adaptive Multilevel Learning with Support Vector Machines
The support vector machines (SVM) is one of the most widely used and practical optimization based classification models in machine learning because of its interpretability and flexibility to produce high quality results. However, the big data imposes a certain difficulty to the most sophisticated but relatively slow versions of SVM, namely, the nonlinear SVM...
The complexity of nonlinear SVM solvers and the number of elements in the kernel matrix quadratically increases with the number of samples in training data. Therefore, both runtime and memory requirements are negatively affected. Moreover, the parameter fitting has extra kernel parameters