Adversarial score matching and improved sampling for image generation

Denoising score matching with Annealed Langevin Sampling (DSM-ALS) is a recent approach to generative modeling. Despite the convincing visual quality of samples, this method appears to perform worse than Generative Adversarial Networks (GANs) under the Fr’echet Inception Distance, a popular metric for generative models...

We show that this apparent gap vanishes when denoising the final Langevin samples using the score network. In addition, we propose two improvements to DSM-ALS: 1) Consistent Annealed Sampling as a more stable alternative to Annealed Langevin Sampling, and 2) a hybrid training formulation,composed of both denoising score matching and adversarial objectives. By combining both of these techniques and exploring different network architectures, we elevate score matching methods and obtain results competitive with state-of-the-art image generation on CIFAR-10.

(read more)



PDF



Abstract

Visit source site

Leave a Reply