A simple implementation of Hamiltonian Monte Carlo in JAX

This is a simple implementation of Hamiltonian Monte Carlo in JAX that is vectorized and supports pytree parameters (i.e. tree-like structures).

Here’s a minimal example to sample from a distribution:

import jax
import jax.numpy as jnp
from hmc import hmc_sampler

# define target distribution
def target_log_pdf(params):
return jax.scipy.stats.t.logpdf(params, df=1).sum()

# run HMC
params_init = jnp.zeros(10)

 

 

 

To finish reading, please visit source site