A Gentle Introduction to the Box-Jenkins Method for Time Series Forecasting
Last Updated on August 15, 2020
The Autoregressive Integrated Moving Average Model, or ARIMA for short is a standard statistical model for time series forecast and analysis.
Along with its development, the authors Box and Jenkins also suggest a process for identifying, estimating, and checking models for a specific time series dataset. This process is now referred to as the Box-Jenkins Method.
In this post, you will discover the Box-Jenkins Method and tips for using it on your time series forecasting problem.
Specifically, you will learn:
- About the ARIMA process and how the 3 steps of the Box-Jenkins Method.
- Best practice heuristics for selecting the q, d, and p model configuration for an ARIMA model.
- Evaluating models by looking for overfitting and residual errors as a diagnostic process.
Kick-start your project with my new book Time Series Forecasting With Python, including step-by-step tutorials and the Python source code files for all examples.
Let’s get started.