Lemotif: An Affective Visual Journal Using Deep Neural Networks
Abstract
We present Lemotif, an integrated natural language processing and image generation system that uses machine learning to (1) parse a text-based input journal entry describing the user’s day for salient themes and emotions and (2) visualize the detected themes and emotions in creative and appealing image motifs. Synthesizing approaches from artificial intelligence and psychology, Lemotif acts as an affective visual journal, encouraging users to regularly write and reflect on their daily experiences through visual reinforcement. By making patterns in emotions and their sources more apparent, Lemotif aims to help users better understand their emotional lives, identify opportunities for action, and track the effectiveness of behavioral changes over time. We verify via human studies that prospective users prefer motifs generated by Lemotif over corresponding baselines, find the motifs representative of their journal entries, and think they would be more likely to journal regularly using a Lemotif-based app.