Gentle Introduction to Predictive Modeling
Last Updated on July 22, 2020
When you’re an absolute beginner it can be very confusing. Frustratingly so.
Even ideas that seem so simple in retrospect are alien when you first encounter them. There’s a whole new language to learn.
I recently received this question:
So using the iris exercise as an example if I were to pluck a flower from my garden how would I use the algorithm to predict what it is?
It’s a great question.
In this post I want to give a gentle introduction to predictive modeling.
1. Sample Data
Data is information about the problem that you are working on.
Imagine we want to identify the species of flower from the measurements of a flower.
The data is comprised of four flower measurements in centimeters, these are the columns of the data.
Each row of data is one example of a flower that has been measured and it’s known species.