CLOOB training (JAX) and inference (JAX and PyTorch)

Pretrained models

PyTorch

from cloob_training import model_pt, pretrained

pretrained.list_configs()

returns:

['cloob_laion_400m_vit_b_16_16_epochs', 'cloob_laion_400m_vit_b_16_32_epochs']

The models can be used by:

config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs')
model = model_pt.get_pt_model(config)
checkpoint = pretrained.download_checkpoint(config)
model.load_state_dict(model_pt.get_pt_params(config, checkpoint))
model.eval().requires_grad_(False).to('cuda')

Model class attributes:

model.config: the model config dict.

model.image_encoder: the image encoder, which expects NCHW batches of normalized images (preprocessed by model.normalize), where C

 

 

 

To finish reading, please visit source site