Extract knowledge from raw text in python

This repository is a nearly copy-paste of “From Text to Knowledge: The Information Extraction Pipeline” with some cosmetic updates. I made an installable version to evaluate it easily. The original code is available @ trinity-ie. To create some value, I added the Luke model to predict relations between entities. Luke is a transformer (same family as Bert), its particularity is that during its pre-training, it trains parameters dedicated to entities within the attention mechanism. Luke is in fact a very efficient model on entity-related tasks. We use here the version of Luke fine-tuned on the dataset TACRED.

In this blog post, Tomaz Bratanic presents a complete pipeline for extracting triples from raw text. The first step of the pipeline is to resolve the coreferences. The second step of the

 

 

 

To finish reading, please visit source site