ESPnet: end-to-end speech processing toolkit

ESPnet

ESPnet is an end-to-end speech processing toolkit, mainly focuses on end-to-end speech recognition and end-to-end text-to-speech. ESPnet uses chainer and pytorch as a main deep learning engine, and also follows Kaldi style data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments.

Key Features

Kaldi style complete recipe

  • Support numbers of ASR recipes (WSJ, Switchboard, CHiME-4/5, Librispeech, TED, CSJ, AMI, HKUST, Voxforge, REVERB, etc.)
  • Support numbers of TTS recipes with a similar manner to the ASR recipe (LJSpeech, LibriTTS, M-AILABS, etc.)
  • Support numbers of ST recipes (Fisher-CallHome Spanish, Libri-trans, IWSLT’18, How2, Must-C, Mboshi-French, etc.)
  • Support numbers of MT recipes (IWSLT’16, the above ST recipes etc.)
  • Support speech separation and recognition recipe (WSJ-2mix)
  • Support voice

     

     

     

    To finish reading, please visit source site