Attention in Attention Network for Image Super-Resolution
A2N
This repository is an PyTorch implementation of the paper
“Attention in Attention Network for Image Super-Resolution” [arXiv]
Visual results in the paper are availble at Google Drive or Baidu Netdisk (password: 7t74).
Unofficial TensorFlow implementation: https://github.com/Anuj040/superres
Test
Dependecies: PyTorch==0.4.1 (Will be updated to support PyTorch>1.0 in the future)
You can download the test sets from Google Drive. Put the test data in ../Data/benchmark/
.
python main.py --scale 4 --data_test Set5 --pre_train ./experiment/model/aan_x4.pt --chop --test_only
If you use CPU, please add “–cpu”.
Train
Training data preparation
- Download DIV2K training data from DIV2K dataset or SNU_CVLab.
- Specify
'--dir_data'
in option.py based on the data path.
For more informaiton, please refer to EDSR(PyTorch).
Training
# SR x2
python main.py