LaneAF: Robust Multi-Lane Detection with Affinity Fields
LaneAF
LaneAF: Robust Multi-Lane Detection with Affinity Fields
Installation
-
Clone this repository
-
Install Anaconda
-
Create a virtual environment and install all dependencies:
conda create -n laneaf pip python=3.6
source activate laneaf
pip install numpy scipy matplotlib pillow scikit-learn
pip install opencv-python
pip install https://download.pytorch.org/whl/cu101/torch-1.7.0%2Bcu101-cp36-cp36m-linux_x86_64.whl
pip install https://download.pytorch.org/whl/cu101/torchvision-0.8.1%2Bcu101-cp36-cp36m-linux_x86_64.whl
source deactivate
You can alternately find your desired torch/torchvision wheel from here.
-
Clone and make DCNv2:
cd models/dla
git clone https://github.com/lbin/DCNv2.git
cd DCNv2
./make.sh
TuSimple
The entire TuSimple dataset should be downloaded and organized as follows:
└── TuSimple/
├── clips/
| └── .
| └── .
├── label_data_0313.json
├── label_data_0531.json
├── label_data_0601.json
├── test_tasks_0627.json
├── test_baseline.json
└── test_label.json
The model requires ground truth segmentation labels during training. You can generate