Recurrent Multi-view Alignment Network for Unsupervised Surface Registration

RMA-Net

This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021).

Paper address: https://arxiv.org/abs/2011.12104

Project webpage: https://wanquanf.github.io/RMA-Net.html

Prerequisite Installation

The code has been tested with Python3.8, PyTorch 1.6 and Cuda 10.2:

conda create --name rmanet
conda activate rmanet
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge igl

Other requirements include: eigen3, Openmesh and MeshlabServer.

Build the cuda extension:

python build_cuda.py

Usage

Pre-trained Models

Download the pre-trained models and put the models in the [YourProjectPath]/pre_trained folder.

Run the registration

To run registration for a single sample, you can run:

python inference.py --weight [pretrained-weight-path] --src [source-obj-path] --tgt [target-obj-path] --iteration [iteration-number] --device_id [gpu-id] --if_nonrigid [1 or 0]

The

 

 

 

To finish reading, please visit source site