Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask

This repository implements the framework OrienMask for real-time instance segmentation.

It achieves 34.8 mask AP on COCO test-dev at the speed of 42.7 FPS evaluated with a single RTX 2080Ti. (log)

Paper: Real-time Instance Segmentation with Discriminative Orientation Maps

Installation

Please see INSTALL.md to prepare the environment and dataset.

Usage

Place the pre-trained backbone (link) and trained model (link) as follows for convenience (otherwise update the corresponding path in configurations):

├── checkpoints
│   ├── pretrained
│   │   ├──pretrained_darknet53.pth
│   ├── OrienMaskAnchor4FPNPlus
│   │   ├──orienmask_yolo.pth

train

Three items should be noticed when deploying different number of GPUs: n_gpu, batch_size, accumulate. Keep in mind that the approximate batch size equals to n_gpu * batch_size * accumulate.

# multi-gpu train (n_gpu=2, batch_size=8, accumulate=1)
#

 

 

 

To finish reading, please visit source site