The Python Toolbox for Neurophysiological Signal Processing

NeuroKit

The Python Toolbox for Neurophysiological Signal Processing

This package is the continuation of NeuroKit 1. It’s a user-friendly package providing easy access to advanced biosignal processing routines. Researchers and clinicians without extensive knowledge of programming or biomedical signal processing can analyze physiological data with only two lines of code.

Quick Example

import neurokit2 as nk

# Download example data
data = nk.data("bio_eventrelated_100hz")

# Preprocess the data (filter, find peaks, etc.)
processed_data, info = nk.bio_process(ecg=data["ECG"], rsp=data["RSP"], eda=data["EDA"], sampling_rate=100)

# Compute relevant features
results = nk.bio_analyze(processed_data, sampling_rate=100)

And boom ![boom](https://github.githubassets.com/images/icons/emoji/unicode/1f4a5.png =20×20) your analysis is done ![sunglasses](https://github.githubassets.com/images/icons/emoji/unicode/1f60e.png =20×20)

Installation

You can install NeuroKit2 from PyPI

pip install neurokit2

or conda-forge

conda install -c conda-forge neurokit2

If you’re not sure what to do,

 

 

 

To finish reading, please visit source site