Theoretical Knowledge Graph Reasoning via Ending Anchored Rules

Discovering precise and specific rules from knowledge graphs is regarded as an essential challenge, which can improve the performances of many downstream tasks and even provide new ways to approach some Natural Language Processing research topics. In this paper, we provide a fundamental theory for knowledge graph reasoning based on ending anchored rules...

Our theory provides precise reasons answering why or why not a triple is correct. Then, we implement our theory by what we called the EARDict model. Results show that the EARDict model achieves new state-of-the-art performances on benchmark knowledge graph completion tasks, including

 

 

To finish reading, please visit source site