Multi-Label Classification with Deep Learning
Last Updated on August 31, 2020
Multi-label classification involves predicting zero or more class labels.
Unlike normal classification tasks where class labels are mutually exclusive, multi-label classification requires specialized machine learning algorithms that support predicting multiple mutually non-exclusive classes or “labels.”
Deep learning neural networks are an example of an algorithm that natively supports multi-label classification problems. Neural network models for multi-label classification tasks can be easily defined and evaluated using the Keras deep learning library.
In this tutorial, you will discover how to develop deep learning models for multi-label classification.
After completing this tutorial, you will know:
- Multi-label classification is a predictive modeling task that involves predicting zero or more mutually non-exclusive class labels.
- Neural network models can be configured for multi-label classification tasks.
- How to evaluate a neural network for multi-label classification and make a prediction for new data.
Let’s get started.
Tutorial Overview
This tutorial is divided into three parts; they are:
- Multi-Label Classification
- Neural
To finish reading, please visit source site